Binômio de Newton

Denomina-se Binômio de Newton , a todo binômio da forma (a + b)n , sendo n um número natural .

Exemplo: 
B = (3x - 2y)4 ( onde a = 3x, b = -2y e n = 4 [grau do binômio] ).

Nota 1:
Isaac Newton - físico e matemático inglês(1642 - 1727). 
Suas contribuições à Matemática, estão reunidas na monumental obra Principia Mathematica, escrita em 1687.

Exemplos de desenvolvimento de binômios de Newton :
a) (a + b)2 = a2 + 2ab + b2
b) (a + b)3 = a3 + 3 a2b + 3ab2 + b3
c) (a + b)4 = a4 + 4 a3b + 6 a2b2 + 4ab3 + b4
d) (a + b)5 = a5 + 5 a4b + 10 a3b2 + 10 a2b3 + 5ab4 + b5

Nota 2:
Não é necessário memorizar as fórmulas acima, já que elas possuem uma lei de formação bem definida, senão vejamos:

Vamos tomar por exemplo, o item (d) acima:
Observe que o expoente do primeiro e últimos termos são iguais ao expoente do binômio, ou seja, igual a 5.
A partir do segundo termo, os coeficientes podem ser obtidos a partir da seguinte regra prática de fácil memorização:

Multiplicamos o coeficiente de a pelo seu expoente e dividimos o resultado pela ordem do termo. O resultado será o coeficiente do próximo termo. Assim por exemplo, para obter o coeficiente do terceiro termo do item (d) acima teríamos: 
5.4 = 20; agora dividimos 20 pela ordem do termo anterior (2 por se tratar do segundo termo) 20:2 = 10 que é o coeficiente do terceiro termo procurado.

Observe que os expoentes da variável a decrescem de n até 0 e os expoentes de b crescem de 0 até n. Assim o terceiro termo é 10 a3b2 (observe que o expoente de a decresceu de 4 para 3 e o de b cresceu  de 1 para 2).

Usando a regra prática acima, o desenvolvimento do binômio de Newton (a + b)7 será:
(a + b)7 = a7 + 7 a6b + 21 a5b2 + 35 a4b3 + 35 a3b4 + 21 a2b5 + 7 ab6 + b7

Como obtivemos, por exemplo, o coeficiente do 6º termo (21 a2b5) ?

Pela regra: coeficiente do termo anterior = 35. Multiplicamos 35 pelo expoente de a que é igual a 3 e dividimos o resultado pela ordem do termo que é 5. 
Então, 35 . 3 = 105 e dividindo por 5 (ordem do termo anterior) vem 105:5 = 21, que é o coeficiente do sexto termo, conforme se vê acima.

Observações:
1) o desenvolvimento do binômio (a + b)n é um polinômio.
2) o desenvolvimento de (a + b)n possui n + 1 termos .
3) os coeficientes dos termos equidistantes dos extremos , no desenvolvimento de 
(a + b)n são iguais .
4) a soma dos coeficientes de (a + b)n é igual a 2n .

Fórmula do termo geral de um Binômio de Newton

Um termo genérico Tp+1 do desenvolvimento de (a+b)n , sendo p um número natural, é dado por


onde

é denominado Número Binomial e Cn.p é o número de combinações simples de n elementos, agrupados p a p, ou seja, o número de combinações simples de n elementos de taxa p
Este número é também conhecido como Número Combinatório.

Exercícios Resolvidos:

1 - Determine o 7º termo do binômio (2x + 1)9 , desenvolvido segundo as potências decrescentes de x.

Solução:

Vamos aplicar a fórmula do termo geral de (a + b)n , onde a = 2x , b = 1 e n = 9. Como queremos o sétimo termo, fazemos p = 6 na fórmula do termo geral e efetuamos os cálculos indicados. Temos então:
T6+1 = T7 = C9,6 . (2x)9-6 . (1)6 = 9! /[(9-6)! . 6!] . (2x)3 . 1 = 9.8.7.6! / 3.2.1.6! . 8x3 = 84.8x3 = 672x3. Portanto o sétimo termo procurado é 672x3.

2 - Qual o termo médio do desenvolvimento de (2x + 3y)8 ?

Solução:

Temos a = 2x , b = 3y e n = 8. Sabemos que o desenvolvimento do binômio terá 9 termos, porque n = 8. Ora sendo T1 T2 T3 T4 T5 T6 T7 T8 T9 os termos do desenvolvimento do binômio, o termo do meio (termo médio) será o T5 (quinto termo). Logo, o nosso problema resume-se ao cálculo do T5 . Para isto, basta fazer 
p = 4 na fórmula do termo geral e efetuar os cálculos decorrentes. 
Teremos:
T4+1 = T5 = C8,4 . (2x)8-4 . (3y)4 = 8! / [(8-4)! . 4!] . (2x)4 . (3y)4  
= 8.7.6.5.4! / (4! . 4.3.2.1) . 16x4.81y4


Fazendo as contas vem:
T5 = 70.16.81.x4 . y4 = 90720x4y4 , que é o termo médio procurado.

3 - Desenvolvendo o binômio (2x - 3y)3n , obtemos um polinômio de 16 termos . 
Qual o valor de n?

Solução:

Ora, se o desenvolvimento do binômio possui 16 termos, então o expoente do binômio é igual a 15. 
Logo, 3n = 15 de onde conclui-se que n = 5.

4 - Qual a soma dos coeficientes dos termos do desenvolvimento de :

a) (2x - 3y)12 ?                 Resp: 1
b) (x - y)50 ?                 Resp: 0

Solução:

a) basta fazer x=1 e y=1. Logo, a soma S procurada será: S = (2.1 -3.1)12 = (-1)12 = 1
b) analogamente, fazendo x = 1 e y = 1, vem: S = (1 - 1)50 = 050 = 0.

5 - Determine o termo independente de x no desenvolvimento de (x + 1/x )6 .

Solução:

Sabemos que o termo independente de x  é aquele que não depende de x, ou seja, aquele que não possui x.
Temos no problema dado: a = x , b = 1/x e n = 6

Pela fórmula do termo geral, podemos escrever:

Tp+1 = C6,p . x6-p . (1/x)p = C6,p . x6-p . x-p = C6,p . x6-2p . 
Ora, para que o termo seja independente de x, o expoente desta variável deve ser zero, pois x0 = 1. Logo, fazendo 6 - 2p = 0, obtemos p=3. Substituindo então p por 6, teremos o termo procurado. Temos então:
T3+1 = T4 = C6,3 . x0 = C6,3 = 6! /[(6-3)! . 3! ] = 6.5.4.3! / 3!.3.2.1 = 20.
Logo, o termo independente de x é o T4 (quarto termo) que é igual a 20.

Exercícios propostos

1) Qual é o termo em x5 no desenvolvimento de (x + 3)8 ?

2) Determine a soma dos coeficientes do desenvolvimento de (x - 3y)7 .

3) Qual é o valor do produto dos coeficientes do 2o. e do penúltimo termo do desenvolvimento de (x - 1)80 ?

4) FGV-SP - Desenvolvendo-se a expressão [(x + 1/x) . (x - 1/x)]6 , obtém-se como termo independente de x o valor:
a) 10
b) -10
c) 20
d) -20
e) 36
Clique AQUI para ver a solução.

5) UF. VIÇOSA - A soma dos coeficientes do desenvolvimento de (2x + 3y)m é 625. O valor de m é:
a) 5
b) 6
c)10
d) 3
e) 4

6) MACK-SP - Os 3 primeiros coeficientes no desenvolvimento de (x2 + 1/(2x))n estão em progressão aritmética.O valor de n é:
a) 4
b) 6
c) 8
d) 10
e) 12

7) No desenvolvimento de (3x + 13)n há 13 termos. A soma dos coeficientes destes termos 
é igual a:
Resp: 248

8 - UFBA-92 - Sabendo-se que a soma dos coeficientes no desenvolvimento do binômio (a + b)m é igual a 256, calcule (m/2)!
Resp: 24

9 - UFBA-88 - Calcule o termo independente de x no desenvolvimento de (x2 + 1/x)9.
Resp: O termo independente de x é o sétimo e é igual a 84.

10 - Calcule a soma dos coeficientes do desenvolvimento do binômio (3x - 1)10.
Resp: 1024

Respostas:
1) T4 = 1512.x5
2) – 128
3) 6400
4) D
5) E
6) 8
7) 248
8) 24
9) 84
10) 1024


Últimas Notícias

IBGE prevê cerca de 1,5 mil vagas em concurso ainda em 2014

IBGE prevê cerca de 1,5 mil vagas em concurso ainda em 2014

Quinta, 14/08/14
O IBGE espera autorização do governo federal para realizar um concurso público, ... mais »
UFPB divulga edital oferecendo 16 vagas para docentes em João Pessoa

UFPB divulga edital oferecendo 16 vagas para docentes em João Pessoa

Quinta, 14/08/14
Os candidatos que desejarem realizar sua inscrição devem procurar a secretaria d... mais »
Ministério do Planejamento autoriza concurso com mais de 100 vagas para o INPI

Ministério do Planejamento autoriza concurso com mais de 100 vagas para o INPI

Quinta, 14/08/14
As 140 vagas à serem preenchidas são para os cargos de Pesquisador em Propriedad... mais »

Publique seu artigo

Utilize o espaço que o Algo Sobre disponibiliza para você professor, jornalista ou estudante divulgar seu trabalho com publicações no site.

Enviar agora