Inicio seta Mat. Financeira seta Capitalização Composta

Capitalização Composta

Avaliação: 3.3 / 5 (9 votos)

Quando uma determinada soma de dinheiro está aplicada a juros simples, os juros são sempre calculados sempre sobre o montante inicial. quando uma soma está aplicada a juros compostos, os juros são calculados não apenas sobre o capital inicial, mas sobre este capital acrescido dos juros já vencidos.

Capitalização composta é aquela em que a taxa de juros incide sobre o principal acrescido dos juros acumulados até o período anterior. Neste regime de capitalização a taxa varia exponencialmente em função do tempo.

O conceito de montante é o mesmo definido para capitalização simples, ou seja, é a soma do capital aplicado ou devido mais o valor dos juros correspondentes ao prazo da aplicação ou da divida.

A simbologia é a mesma já conhecida, ou seja, M, o montante, C, o capital inicial, n, o período e i, a taxa.
A dedução da fórmula do montante para um único pagamento é pouco mais complexa que aquela já vista para a capitalização simples e para facilitar o entendimento, vamos admitir que defrontamos com o seguinte problema:

Calcular o montante de um capital de R$ 1.000,00, aplicado à taxa de 4% ao mês, durante 5 meses.

Dados:

C = 1.000,00
n = 5 meses
i = 4% ao mês
M = ?

O quadro a seguir permite que visualizemos claramente o cálculo do montante, mês a mês.

Mêscapital iniciojuros cor.montante final
(t)mês (Pt) mês (Jt)mês (mt)
11.000,001.000,00  x 0,04 = 40,001.040,00
21.040,00 1.040,00  x 0,04 = 41,601.081,60
31.081,601.081,60  x 0,04 = 43,261.124,86
41.124,861.124,86  x 0,04 = 45,001.169,86
51.169,861.169,86  x 0,04 = 46,791.216,65

O valor do montante no final do quinto mês é de R$ 1.216,65. O montante final de cada mês é o valor do capital inicial do mês seguinte. Entretanto, essa forma de cálculo é bastante trabalhosa e demorada. Vamos deduzir uma fórmula que permita um cálculo mais fácil e rápido, partindo do desenvolvimento anterior, sem no entanto efetuar os cálculos ali demonstrados.

M0  = 1.000,00
M1  = 1.000,00 + 0,04 x 1.000,00 = 1.000,00(1 + 0,04) = 1.000,00 (1.04)1
M2 = 1.000,00(1,04) + 0,04 x 1.000,00 x (1,04) = 1.000,00 (1,04)(1+0,04) = 1.000,00(1,04)2
..........
M5 = 1.000,00(1,04)4 + 0,04 x 1.000,00(1,04)4 = 1.000,00(1,04)4(1 + 0,04) = 1.000,00 (1,04)5

O valor do montante no final do quinto mês é dado pela expressão: M5 = 1.000,00 (1,04)5. Como (1,04)5 = 1,21656 Þ m = 1.000,00 x 1,21656 = 1.216,65, que confere com o valor determinado anteriormente.
Substituindo cada n da expressão M5 = 1.000,00(1,04)5 pelo seu símbolo correspondente, temos M = C ( 1 + i)n, em que a expressão (1 + i)n é chamada de fator de capitalização ou fator de acumulação de capital para pagamento simples ou único.

Na calculadora HP12C a simbologia é a seguinte:

PV = capital inicial
FV = montante
i     = taxa
n    = prazo/tempo/período

HP12C = 1.000,00 CHS PV 4 i 5 n FV = 1.216,65.

1 - Qual o montante de uma aplicação de R$ 15.000,00, pelo prazo de 9 meses, à taxa de 2% ao mês.

Dados:
C
  = 15.000,00
n  = 9 meses
i   = 2% ao mês
M = ?

Solução:

M = C(1 + i)n
M = 15.000,00 (1 + 0,02)9
M = 15.000,00 x 1,19509 = 17.926,35

O valor atual (ou valor presente) de um pagamento simples, ou único, cuja conceituação é a mesma já definida para capitalização simples, tem sua fórmula de cálculo deduzida da fórmula, como segue.

fig. 01

em que a expressão fig. 01 é chamada Fator de valor atual para pagamento simples (ou único)

2 - A loja “Topa Tudo” financia um bem  de consumo de uso durável no valor de R$ 16.000,00, sem entrada, para pagamento em uma única prestação de R$ 52.512,15 no final de 27 meses. Qual a taxa mensal cobrada pela loja?

Dados:
M = 52.512,15
C  =16.000,00
n = 27 meses
i = ?

Solução:

M = C (1 + i)n
52.512,15 = 16.000,00(1 + i )27
52.512,15 / 16.000,00 = (1 + i)27
3,28201 = (1 + i)27
i = 3,282011/27
i = 1,045 = 1,045 - 1 x 100 = 4,5% ao mês.
HP12C = 52.512,15  FV 16.000,00 CHS PV 27 n i = 4,5% ao mês.


 

Simulados

Simulado com resolução/questões comentadas Com questões comentadas.
Existe conteúdo no site relacionado a este simulado. Com conteúdo relacionado no site. Simulados gratuitos para Vestibular, Enem e Concurso. Para manter um histórico de seus simulados, identifique-se antes.

Publique seu Artigo

Gostaria de ter alguns dos seus artigos publicados aqui no Algo Sobre?

Envie agora


MM - MMXIII © Algo Sobre Vestibular, Enem e Concurso
Quem somos | Feed | Cadastre-se | Anunciar | Release | Termos do Uso
Você está sendo registrado com suas credenciais do Facebook.