As células são componentes fundamentais de todos os organismos vivos do planeta Terra. Cada célula dá estrutura e funcionamento ao ser vivo do qua... Pressione TAB e depois F para ouvir o conteúdo principal desta tela. Para pular essa leitura pressione TAB e depois F. Para pausar a leitura pressione D (primeira tecla à esquerda do F), para continuar pressione G (primeira tecla à direita do F). Para ir ao menu principal pressione a tecla J e depois F. Pressione F para ouvir essa instrução novamente.
Título do artigo:

Estrutura e Fisiologia da Célula

94

por:

As células são componentes fundamentais de todos os organismos vivos do planeta Terra. Cada célula dá estrutura e funcionamento ao ser vivo do qual a célula faz parte, ou seja, a célula é a unidade morfofisiológica dos seres vivos.

Os menores organismos são unicelulares e microscópicos, enquanto que os organismos maiores são pluricelulares. Os seres unicelulares, evidentemente, não formam tecidos, mas podem constituir colônias. Os organismos unicelulares ocorrem em grande quantidade em todos os ambientes. Grande parte da biomassa dos solos é composta de bactérias. Os seres multicelulares podem ser compreendidos como uma complexa "edificação" onde células semelhantes se agrupam formando tecidos, e estes, os órgãos. Os seres pluricelulares apresentam muitos tipos de células, que diferem em tamanho, forma e função. Assim, nos animais, temos os tecidos nervoso, muscular , adiposo, etc. Nos vegetais há os tecidos: meristema, parênquima, colênquima, etc.

Nos fungos, a célula é denominada hifa. O agrupamento de hifas é chamado micélio, mas este não é considerado um tecido verdadeiro como o das plantas e animais.

Os seres do reino Protista são eucariontes e compreendem as algas unicelulares e os protozoários.

Estrutura geral das células

Todas as células apresentam uma mesma estrutura formada de membrana plasmática, citoplasma e núcleo (ou nucleóide). A seguir pormenorizamos um pouco os componentes básicos celulares:

A membrana plasmática

A membrana plasmática (também denominada membrana citoplasmática ou plasmalema) é um delgadíssimo envoltório que delimita a célula e lhe dá individualidade. Quimicamente, a membrana plasmática é composta de lipídios (notadamente fosfolipídios) e proteínas atraídos uns aos outros por interações hidrofóbicas não covalentes. Como resultado, a membrana é uma estrutura flexível, embora resistente, que permite à célula mudanças de forma e tamanho. A membrana consegue controlar a passagem das substâncias polares para dentro e para fora da célula. As proteínas de membrana, além de constituírem a estrutura da membrana, atuam como transportadores de solutos específicos, recebem sinais externos, dão identidade antigênica à célula e atuam como enzimas.

Membrana Plasmática

O citoplasma

Denomina-se citoplasma todo o conteúdo celular compreendido pela membrana plasmática. O citoplasma é composto de um colóide aquoso chamado citossol. No citoplasma das células eucariontes (que compõem o organismo dos animais, plantas fungos e protistas) estão mergulhadas estruturas membranosas, as organelas. As células procariontes (que são as células das bactérias) são de estrutura mais simples e não apresentam organelas. O citossol também é denominado hialoplasma, e as organelas também são conhecidas por orgânulos ou organóides. Encontram-se, dissolvidas no citossol, enzimas, moléculas de ARN-mensageiro, açúcares pequenos, íons, aminoácidos, nucleotídeos, e estruturas onde ocorre a síntese de proteínas, os ribossomos.

Citoplasma

(1) nucléolo
(2) núcleo
(3) ribossomos (pontos pequenos)
(4) vesícula
(5) retículo endoplasmático rugoso
(6) complexo de golgi
(7) Citoesqueleto
(8) retículo endoplasmático liso
(9) mitocôndria
(10) vacúolo
(11) citoplasma
(12) lisossomo
(13) centríolos dentro do centrossoma

O núcleo (nos eucariontes) ou nucleóide (nos procariontes): a região onde se localiza o material genético.

Com poucas exceções (como as hemácias de mamífero) todas as células vivas possuem um núcleo ou um nucleóide, onde o genoma (conjunto total de genes de um organismo) é armazenado. As moléculas de ADN (ácido desoxirribonucléico) são muito longas e ficam compactadas ("empacotadas") dentro do núcleo ou nucleóide como complexos de ADN associado a proteínas específicas. O nucleóide das bactérias não é envolvido por uma membrana, estando, assim, em contato direto com o citoplasma. Já nos organismos de células mais complexas o material genético (ADN) é envolvido por uma dupla membrana lipoprotéica, a carioteca ou envelope nuclear. O núcleo dos eucariontes é uma organela, pois é composto de estrutura membranosa.

Histórico

O início do estudo da Biologia das células deu-se no século XVII, com as investigações do inglês Robert Hooke (1635-1703) e do holandês Antony van Leeuwenhoek (1632-1723). Em 1665, Hooke publica o livro Micrographia, no qual descreve e ilustra a estrutura celular da cortiça, um tecido vegetal de revestimento. Em 1675, Leeuwenhoek aperfeiçoa o microscópio e descobre uma grande variedade de formas de vida unicelulares, incluindo as bactérias (em 1683). No ano de 1824, Dutrochet conclui que todos os tecidos, animais e vegetais, são compostos por pequenas unidades, as células. Em 1830, Meyen faz a suposição de que cada célula vegetal é uma unidade isolada e independente e capaz de construir suas estruturas internas. No ano seguinte, 1831, Robert Brown identifica o núcleo celular. Em 1832, Dumortier observa a divisão celular em algas. Von Mohl, no ano de 1839, descreve em detalhes o fenômeno da mitose. No período de 1838-1839, Schleiden e Schwann defendem a doutrina celular, afirmando que todos os organismos são constituídos de células e que o metabolismo e o desenvolvimento dos tecidos são o resultado da atividade celular. Em 1858, Virchow corretamente explica que toda célula é originada de outra célula preexistente, e que as células, como unidades da vida, são também o local primário das causas das doenças. Durante os anos de 1880 a 1898, observaram-se as organelas: plastos, mitocôndrias e aparelho de Golgi. Em 1907, Harrison consegue desenvolver um meio para o crescimento de células animais em laboratório, assim futuros estudos de metabolismo celular podem ser conduzidos sob condições experimentais controladas.

No século XX, entre os anos de 1930 a 1946 foi desenvolvido o microscópio eletrônico que possibilita o estudo da ultraestrutura celular. Paralelamente, o surgimento de técnicas de Bioquímica e Biologia Celular como o fracionamento celular, a histoquímica deram um avanço extraordinário ao conhecimento sobre as células e os organismos. A partir da década de 60, desvendou-se o papel codificador e regulador dos ácidos nucléicos sobre o metabolismo e o crescimento da célula por meio da síntese de proteínas.

Células procariontes

As células dos organismos procariontes se caracterizam por não possuírem organelas. Os seres procariontes compreendem as bactérias, que se dividem em arqueobactérias e as eubactérias. As arqueobactérias habitam ambientes de condições extremas como águas muito salinas, águas quentes e ácidas, regiões profundas dos oceanos e pântanos. Há diferenças de estrutura genética e de composição lipídica entre as eubactérias e as arqueobactérias. As eubactérias são as mais estudadas e conhecidas, pois têm grande importância ecológica, industrial e médica. Nas eubactérias incluem-se as cianobactérias (estas últimas também conhecidas pela antiga denominação "algas cianofíceas" ou "algas azuis").

As células procariontes são geralmente bem pequenas, tendo 0,5 a 10 micrômetros de diâmetro. Apresentam, na região conhecida como nucleóide, uma molécula circular de ADN não combinada com proteínas básicas (histonas). Em grande parte das bactérias existem moléculas pequenas de ADN circular, são os plasmídios. Estes são independentes do ADN do nucleóide e conferem resistência a toxinas e antibióticos. Ocorre parede celular, que tem composição química diferente da parede celular das plantas. Nos procariontes, a parede celular contém peptidoglicanos (polímeros de glicídio unidos por ligações cruzadas de aminoácidos. Da sua superfície externa a bactéria pode projetar estruturas curtas, semelhantes a cabelos, denominadas pilos, que servem para a adesão a outras células. A síntese de proteínas tem lugar em pequenos ribossomos livres no hialoplasma. Os procariontes não possuem citoesqueleto, um complexo de proteínas fibrilares que dá forma e movimento nos eucariontes. Algumas bactérias têm flagelos de estrutura simples, de cerca de 20 nanômetros de diâmetro. Os flagelos servem para dar propulsão à célula no seu meio ambiente. A composição destes flagelos é a proteína flagelina, diferentemente dos eucariontes, onde os flagelos são feitos de microtúbulos, estes constituídos da proteína tubulina. Alguns procariontes são autotróficos e podem fixar o nitrogênio atmosférico em aminoácidos usados em síntese de proteínas. As cianobactérias têm um extenso sistema de membranas fotossintéticas mergulhadas em seu citossol, nestas membranas existem pigmentos como a clorofila.

Células Eucariontes

As organelas citoplasmáticas

A organização interna das células eucariontes é complexa. O citoplasma acha-se dividido em compartimentos, delimitados por membrana, as organelas.

Geralmente, os livros-texto de Biologia fornecem esquemas didáticos de células eucariontes. São bons exemplos os esquemas de célula animal e vegetal encontrados em Amabis (1994) págs. 58 e 59. O professor deve sempre ressaltar aos seus alunos que os esquemas didáticos de células procuram representar conjuntamente todas as organelas possíveis de existir em uma célula. Porém, de acordo com sua especialização, uma célula apresentará certas organelas, mas não apresentará outras. Como exemplo, temos que uma célula da raiz não terá cloroplastos, mas uma célula da folha possuirá cloroplastos. No caso dos animais, como exemplo, um hepatócito terá um núcleo muito ativo e não possuirá flagelo; já um espermatozóide usará um flagelo para se locomover e o seu núcleo será muito compactado.

Além das organelas dos eucariontes, existem outras estruturas que compõem as células:

Parede celular

As células são caracterizadas não somente pelo seu conteúdo e organização interna, mas também por uma complexa mistura de materiais extracelulares que, nas plantas é referida como parede celular (a parede celular diferencia as células vegetais das células animais). Esta parede é constituída, principalmente, de carboidratos, proteínas e de algumas substâncias complexas. Estes componentes são sintetizados dentro da célula e transportados através da membrana plasmática para o local onde eles se organizam. A parede celular possui diversas funções:

A parede celular possui diversas funções:

  • Atua como um exoesqueleto celular, possibilitando a formação de uma pressão positiva dentro da célula (turgescência) e, consequentemente, a manutenção da forma da célula;
  • Por resistir à pressão de turgescência, ela se torna importante para as relações hídricas da planta;
  • A parede celular permite a junção de células adjacentes;
  • Determina a resistência mecânica das estruturas do vegetal, permitindo que muitas plantas cresçam e se tornem árvores de grandes alturas;
  • A resistência mecânica das paredes do xilema também permite que as células resistam às fortes tensões criadas dentro dos vasos, o que é fundamental para o transporte de água e minerais do solo até as folhas;
  • Em sementes, os polissacarídeos da parede das células do endosperma ou dos cotilédones funcionam como reservas metabólicas. Na maioria das paredes celulares, isso não ocorre;
  • Alguns oligossacarídeos presentes na parede celular podem atuar como moléculas de sinalização, durante a diferenciação celular e durante o reconhecimento de patógenos e simbiontes.
  • Embora a parede celular seja permeável para pequenas moléculas, ela atua como uma barreira à difusão de macromoléculas, sendo a principal barreira à invasão de patógenos.

Estruturalmente, pode-se dividir a parede celular, de fora para dentro, em: Lamela Média, Parede Primária e Parede Secundária.

A Lamela Média é uma fina camada de material, considerada o cimento que promove a junção de paredes primárias de células adjacentes. É constituída de substâncias pécticas (ácido péctico, pectato de cálcio e de magnésio) e de proteínas (não são as mesmas encontradas no restante da parede celular). A lamela média juntamente com a parede primária origina-se da placa celular que é formada durante a divisão celular (telófase).

As Paredes Primárias são formadas em células jovens em crescimento. Algumas paredes primárias, tais como aquelas do parênquima de bulbos de cebola, são muito finas (100 nm) e possuem arquitetura simples. Outras paredes primárias, tais como aquelas encontradas em colênquima ou em epidermes, podem ser bem mais espessas e conter múltiplas camadas. A parede primária é constituída de celulose, hemiceluloses, pectinas, proteínas e compostos fenólicos.

As paredes secundárias são formadas após a célula parar de crescer. Elas são ricas em celulose e lignina (Tabela 2). No entanto, elas podem conter polissacarídeos não celulósicos (principalmente aqueles classificados como hemiceluloses) e proteínas. A parede secundária pode tornar-se altamente especializada em estrutura e função, refletindo o estado de especialização celular. As células do xilema de árvores, por exemplo, apresentam paredes secundárias bastante espessas, que são reforçadas pela presença de lignina. Isto é fundamental para o transporte de água a longa distância.

Grãos de armazenamento e gotículas lipídicas

As células podem armazenar substâncias de reserva em seu citoplasma. Deste modo, encontramos grãos de amido (em vegetais), glicogênio (em animais e fungos), paramilo (em algas), gotículas de gordura (em muitas células, como as de animais, fungos, etc.).

Ribossomos

Os ribossomos são o local da síntese protéica nas células. Podem estar livres no hialoplasma ou aderidos à face externa das membranas do retículo endoplasmático.

Centríolos

Estruturas de forma cilíndrica compostas de microtúbulos protéicos. Os centríolos são ausentes em procariontes e em vegetais superiores. Durante a divisão celular, em seu redor, forma-se o fuso mitótico.

Retículo endoplasmático

Rede de túbulos e cisternas achatadas mergulhados no citoplasma. Dentre suas várias funções ressaltamos o metabolismo de lipídios (incluindo a síntese de esteróides e fosfolipídios) e a síntese de proteínas para exportação.

Aparelho de Golgi

Esta organela também é denominada complexo de Golgi ou, simplesmente, Golgi. Esta organela foi descoberta pelo citologista italiano Camillo Golgi que viveu no século XIX. Observa-se, no aparelho de Golgi, a síntese de enzimas e a gênese de lisossomas, estas organelas responsáveis pela digestão celular.

Lisossomas

Estas organelas são vesículas esféricas repletas de enzimas hidrolíticas que atuam em pH ácido. No animais e protistas, os lisossomas digerem partículas alimentares provindas do exterior da célula, mas também podem degradar organelas envelhecidas da própria célula num processo conhecido como autofagia. As plantas não possuem lisossomas e a função semelhante destes é feita pelos vacúolos.

Mitocôndrias

Têm sua estrutura formada de duas membranas que delimitam uma matriz coloidal onde encontram-se enzimas, íons, dentre outras substâncias. No interior das mitocôndrias ocorre a degradação oxidativa de ácidos graxos e de grupos acetil (provindos da degradação da glicose). Neste processo oxidativo (denominado respiração celular), participam o oxigênio molecular, as enzimas do ciclo de Krebs e a cadeia respiratória, e são sintetizadas 36 moléculas de ATP (trifosfato de adenosina).

Cloroplastos

Há, nas células vegetais, organelas relacionadas com a síntese de glicídios, os plastos. Os cloroplastos são os plastos mais abundantes nos vegetais. Têm cor verde pois apresentam grande quantidade do pigmento clorofila, responsável pela absorção de luz no processo de fotossíntese. Assim, como as mitocôndrias, os cloroplastos possuem duas membranas concêntricas que delimitam uma região coloidal, o estroma. Mergulhado no estroma, existe um sistema de membranas. Parte da fotossíntese acontece no conjunto de membranas internas e parte se dá no estroma do cloroplasto. Pelo processo de fotossíntese há a síntese de substâncias orgânicas como, por exemplo, a glicose.

Vacúolos

Os vacúolos são vesículas preenchidas com partículas ou líquidos. São delimitados por uma membrana simples. Nas células animais e em protistas, os vacúolos fundem-se com lisossomos e acontece a digestão do conteúdo do vacúolo. Nas células vegetais geralmente existe um grande vacúolo. O líquido deste vacúolo é chamado seiva vegetal e tem enzimas digestivas que atuam em pH ácido.

Peroxissomos

Certos processos químicos oxidativos, como a degradação de aminoácidos, produzem peróxido de hidrogênio (H2O2) que pode lesar os componentes celulares. Para proteger a célula há os peroxissomos, organelas que possuem a enzima catalase que catalisa a reação de degradação de moléculas de peróxido de hidrogênio em água e oxigênio molecular. Os peroxissomos estão presentes nas células eucariontes.

Núcleo

Nos eucariontes, o núcleo abriga o genoma, o conjunto total de genes que é responsável pela codificação das proteínas e enzimas que determinam a constituição e o funcionamento da célula e do organismo. O núcleo é envolvido por uma dupla membrana porosa, a carioteca ou envelope nuclear, que regula a passagem de moléculas entre o interior do núcleo e o citoplasma. Os genes são segmentos de ADN, o ácido desoxirribonucléico, molécula orgânica que armazena em sua estrutura molecular, as informações genéticas. O ADN se combina fortemente a proteínas denominadas histonas, formando um material filamentoso intranuclear , a cromatina.

O Citoesqueleto

Nas células eucariontes há uma rede tridimensional intracitoplasmática de proteínas fibrilares, o citoesqueleto. Existem três tipos de proteínas filamentosas no citoplasma: os filamentos de actina, os microtúbulos e os filamentos intermediários. Muitos filamentos de actina se ligam a proteínas específicas da membrana plasmática, deste modo conferem forma e rigidez às membrana plasmática e superfície celular. Além de dar forma às células, o citoesqueleto propicia movimento direcionado interno de organelas e possibilita o movimento da célula como um todo (por exemplo, em macrófagos, leucócitos e em protozoários). Nos músculos, a rede de proteínas fibrilares (notadamente as proteínas actina e miosina) causa a contração e a distensão das células musculares. Os microtúbulos formam os cílios e flagelos dos protistas e dos espermatozóides. Durante a divisão celular, os cromossomos são levados às células filhas pelo fuso, um complexo de microtúbulos.

Células de Animais

As células animais diferem em forma e tamanho conforme o tipo de tecido a que pertencem. As células dos animais não possuem parede celular, cloroplastos e o vacúolo central característicos das células de plantas.

De acordo com a sua função, uma célula apresentará organelas mais desenvolvidas do que outras. Assim, células que secretam grande quantidade de enzimas digestivas, como as do pâncreas, têm o aparelho de Golgi bem desenvolvido. Podemos citar outro exemplo de especialização celular, as hemácias, em que todo o citoplasma é tomado pelo pigmento hemoglobina. Por este fato as hemácias não tem núcleo e as outras organelas. Como as hemácias precisam ser carregadas dentro do líquido circulatório, o sangue, elas têm tamanho pequeno e são de forma redonda.

Células de Vegetais

As células vegetais têm várias formas que dependem de sua função e do tecido a que pertencem. São característicos da célula vegetal a parede celulósica, os plastos, o vacúolo central.

Certas células vegetais apresentam glioxissomos, que são peroxissomos que têm as enzimas do ciclo do glioxilato, uma via metabólica que converte lipídios em glicídios quando da germinação das sementes.

Alguns vacúolos acumulam grande quantidade de pigmentos arroxeados, as antocianinas. Deste modo certos órgãos da planta podem ter cor avermelhada ou arroxeada, como as uvas e as folhas de trapoeraba.

As células vegetais comunicam-se entre si por pontes citoplasmáticas, os plasmodesmos.

E squema de uma célula vegetal.

Células de Protistas

Os protistas são as algas unicelulares e os protozoários. A célula de um protista é semelhante às células de animais e plantas, mas há particularidades. Os plastos das algas são diferentes dos das plantas quanto à sua organização interna de membranas fotossintéticas. Ocorrem cílios e flagelos para a locomoção. Alguns protozoários, como certas amebas, têm envoltórios protetores, as tecas. Os radiolários e heliozoários possuem um esqueleto intracelular composto de sílica. Os foraminíferos são dotados de carapaças externas feitas de carbonato de cálcio. As algas diatomáceas possuem carapaças silicosas. Os protistas podem ainda ter adaptações de forma e estrutura de acordo com o seu modo de vida: parasita, ou de vida livre.

Células de Fungos

As células fúngicas são as hifas. As hifas se apresentam como filamentos curtos ou longos, revestido por uma parede celular fina e tendo no seu interior a membrana plasmática, o citoplasma e as organelas. Afora a ausência total de plastos e grãos de amido (os fungos são heterotróficos), a célula de fungo pouco difere das células animais e vegetais. O polissacarídio de reserva é o glicogênio.

Condriocontos, uma denominação desusada para o conjunto de mitocôndrias.

Estrutura das hifas:

A, Estrutura de uma hifa jovem;
B, Estrutura de uma hifa madura;
m, membrana;
v, vacúolo;
gl, globos lipóides;
n, núcleo;
c, citoplasma;
mi, condriocontos;
s, septo;
t, trabécula.

Os fungos se reproduzem por esporos, tipo de célula de cuja germinação se originam as hifas. A membrana dos esporos é bem diferenciada, possuindo dois estratos: o endospório (interno) e o epispório (externo).

Estrutura celular de um esporo fúngico

epi epispório;
end endospório;
n núcleo;
g.o. gotas de óleo;
p. citoplasma;
v. vacúolos