Sistemas Lineares II

Paulo Marques

por:

sobre: Matemática

1 - Sistema linear

É um conjunto de m equações lineares de n incógnitas (x1, x2, x3, ... , xn) do tipo:
a11x1 + a12x2 + a13x3 + ... + a1nxn = b1
a21x1 + a22x2 + a23x3 + ... + a2nxn = b2
a31x1 + a32x2 + a33x3 + ... + a3nxn = b3
.................................................................
.................................................................
am1x1 + am2x2 + am3x3 + ... + amnxn = bn

Exemplo:
3x + 2y - 5z = -8
4x - 3y + 2z = 4
7x + 2y - 3z = 2
0x + 0y + z = 3

Temos acima um sistema de 4 equações e 3 incógnitas (ou variáveis).
Os termos a11, a12, ... , a1n, ... , am1, am2, ..., amn são denominados coeficientes e b1, b2, ... , bn são os
termos independentes
.
A ênupla (
a 1, a 2 , a 3 , ... , a n) será solução do sistema linear se e somente se satisfizer simultaneamente a todas as m equações.

Exemplo: O terno ordenado (2, 3, 1) é solução do sistema:
x + y + 2z = 7
3x + 2y - z = 11
x + 2z = 4
3x - y - z = 2
pois todas as equações são satisfeitas para x=2, y=3 e z=1.

Notas:
1 - Dois sistemas lineares são EQUIVALENTES quando possuem as mesmas soluções.
Exemplo: Os sistemas lineares

S1: 2x + 3y = 12
3x - 2y = 5
S2: 5x - 2y = 11
6x + y = 20

são equivalentes, pois ambos admitem o par ordenado (3, 2) como solução. Verifique!

2 - Se um sistema de equações possuir pelo menos uma solução, dizemos que ele é POSSÍVEL ou COMPATÍVEL.

3 - Se um sistema de equações não possuir solução, dizemos que ele é IMPOSSÍVEL ou INCOMPATÍVEL.

4 - Se o sistema de equações é COMPATÍVEL e possui apenas uma solução, dizemos que ele é DETERMINADO.

5 - Se o sistema de equações é COMPATÍVEL e possui mais de uma solução, dizemos que ele é INDETERMINADO.

6 - Se os termos independentes de todas as equações de um sistema linear forem todos nulos, ou seja
b1 = b2 = b3 = ... = bn = 0, dizemos que temos um sistema linear HOMOGÊNEO.

Exemplo:
x + y + 2z = 0
2x - 3y + 5z = 0
5x - 2y + z = 0

2 - Exercícios Resolvidos

2.1 - UEL - 84 (Universidade Estadual de Londrina)
Se os sistemas

S1: x + y = 1
x - 2y = -5
S2: ax - by = 5
ay - bx = -1

são equivalentes, então o valor de a2 + b2 é igual a:

a) 1
b) 4
c) 5
d) 9
e) 10

Solução:

Como os sistemas são equivalentes, eles possuem a mesma solução. Vamos resolver o sistema S1:
x + y = 1
x - 2y = -5

Subtraindo membro a membro, vem: x - x + y - (-2y) = 1 - (-5). Logo, 3y = 6 \ y = 2.
Portanto, como x+y = 1, vem, substituindo: x + 2 = 1
\ x = -1.
O conjunto solução é portanto S = {(-1, 2)}.

Como os sistemas são equivalentes, a solução acima é também solução do sistema S2. Logo, substituindo em S2 os valores de x e y encontrados para o sistema S1, vem:
a(-1) - b(2) = 5
Þ - a - 2b = 5
a(2) - b (-1) = -1 Þ 2 a + b = -1
Multiplicando ambos os membros da primeira equação (em azul) por 2, fica:
-2 a - 4b = 10
Somando membro a membro esta equação obtida com a segunda equação (em vermelho),
fica: -3b = 9
\ b = - 3
Substituindo o valor encontrado para b na equação em vermelho acima (poderia ser também na outra equação em azul), teremos:
2 a + (-3) = -1
\ a = 1.
Portanto, a2 + b2 = 12 + (-3)2 = 1 + 9 = 10.
Portanto a alternativa correta é a letra E.

2.2 - Determine o valor de m de modo que o sistema de equações abaixo,
2x - my = 10
3x + 5y = 8, seja impossível.

Solução:
Teremos, expressando x em função de m, na primeira equação:
x = (10 + my) / 2
Substituindo o valor de x na segunda equação, vem:
3[(10+my) / 2] + 5y = 8

Multiplicando ambos os membros por 2, desenvolvendo e simplificando, vem:
3(10+my) + 10y = 16
30 + 3my + 10y = 16
(3m + 10)y = -14
y = -14 / (3m + 10)

Ora, para que não exista o valor de y e, em consequência não exista o valor de x, deveremos ter o denominador igual a zero, já que , como sabemos, NÃO EXISTE DIVISÃO POR ZERO.

Portanto, 3m + 10 = 0 , de onde conclui-se m = -10/3, para que o sistema seja impossível, ou seja, não possua solução.

Agora, resolva e classifique os seguintes sistemas:

a) 2x + 5y .- ..z = 10
.............3y + 2z = ..9
.....................3z = 15

b) 3x - 4y = 13
.....6x - 8y = 26

c) 2x + 5y = 6
....8x + 20y = 18

Resp:
a) sistema possível e determinado. S = {(25/3, -1/3, 5)}
b) sistema possível e indeterminado. Possui um número infinito de soluções.
c) sistema impossível. Não admite soluções.


Últimas Notícias

Unicamp divulga lista de convocados em primeira chamada no vestibular 2015

Unicamp divulga lista de convocados em primeira chamada no vestibular 2015

Segunda, 02/02/15
Convocados deverão realizar a matrícula não presencial entre os dias 3 e 4 de fe... mais »
MEC divulga a primeira chamada de aprovados no Prouni 2015

MEC divulga a primeira chamada de aprovados no Prouni 2015

Segunda, 02/02/15
O Ministério da Educação (MEC) divulgou hoje (2) o resultado da primeira chamada... mais »
Selecionados no Sisu podem fazer matrícula a partir de hoje (30/01)

Selecionados no Sisu podem fazer matrícula a partir de hoje (30/01)

Sexta, 30/01/15
A partir de hoje (30), os candidatos selecionados no Sistema de Seleção Unificad... mais »

Publique seu artigo

Utilize o espaço que o Algo Sobre disponibiliza para você professor, jornalista ou estudante divulgar seu trabalho com publicações no site.

Enviar agora